Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diaquabis[5-(1H-tetrazol-5-ylamino- κN^4)tetrazolato- κN^1]manganese(II) dihydrate

Jiao-Min Lin, Yang-Fan Guan and Wen Dong*

School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006 People's Republic of China Correspondence e-mail: dw320@yahoo.com.cn

Received 23 October 2007; accepted 8 November 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(N-C) = 0.004$ Å; R factor = 0.052; wR factor = 0.145; data-to-parameter ratio = 12.8.

The title compound, $[Mn(C_2H_2N_9)_2(H_2O)_2]\cdot 2H_2O$, has been prepared under hydrothermal conditions. The Mn^{II} atom, lying on an inversion center, is coordinated in an octahedral geometry defined by four N atoms from two di-1H-tetrazol-5ylaminate ligands in the equatorial plane and two water molecules in the axial positions. The complex molecules are linked into a three-dimensional network through $O-H \cdots N$, $N-H \cdots O$ and $N-H \cdots N$ hydrogen bonds.

Related literature

For a related copper(II) complex of bistetrazolylimine, see: Friedrich et al. (2005).

Experimental

Crystal data $[Mn(C_2H_2N_9)_2(H_2O)_2] \cdot 2H_2O$ $M_r = 431.26$ Orthorhombic, Pbca a = 14.8048 (12) Å b = 6.8674 (6) Å c = 15.1623 (12) Å

V = 1541.6 (2) Å³ Z = 4Mo Ka radiation $\mu = 0.92 \text{ mm}^-$ T = 296 (2) K 0.24 \times 0.19 \times 0.12 mm $R_{\rm int} = 0.084$

23612 measured reflections

1764 independent reflections

1148 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.798, T_{\max} = 0.891$

Refinement

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 1.54 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Mn1-O1	2.191 (3)	Mn1-N6	2.304 (3)
Mn1-N1	2.199 (3)		
D1 ⁱ -Mn1-N1	87.37 (10)	O1-Mn1-N6	87.10 (11)
D1-Mn1-N1	92.63 (10)	N1-Mn1-N6	78.00 (9)
D1 ⁱ -Mn1-N6	92.90 (10)	$N1^{i}-Mn1-N6$	102.00 (9)

Symmetry code: (i) -x + 1, -y, -z + 1.

Table 2	
Hydrogen-bond geometry (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N9–H2···N3 ⁱⁱ	0.86	1.96	2.803 (4)	166
$N5-H1\cdots O2$	0.86	1.87	2.716 (4)	169
O1−H3···N4 ⁱⁱⁱ	0.82	1.97	2.782 (4)	172
$O1 - H4 \cdot \cdot \cdot N8^{iv}$	0.79 (5)	2.33 (6)	3.072 (4)	157 (6)
$O2-H5\cdots N2^{v}$	0.82(5)	2.21 (5)	2.859 (5)	136 (4)
$O2-H5\cdots N7^{vi}$	0.82 (5)	2.62 (5)	3.280 (4)	139 (4)
O2−H6···N7 ^{vii}	0.85 (6)	2.39 (7)	3.140 (4)	148 (5)
$O2-H6\cdots N2^{ii}$	0.85 (6)	2.39 (6)	2.885 (4)	118 (5)

Symmetry codes: (ii) $x + \frac{1}{2}, y, -z + \frac{3}{2}$; (iii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) $-x + \frac{3}{2}, y + \frac{1}{2}, z$; (v) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (vi) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (vii) $-x + \frac{3}{2}, -y, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

We acknowledge financial support from the National Natural Science Foundation of China (grant No. 206710214) and the Science and Technology Program Foundation of Guangzhou, China (grant No. 2007 J1-co381).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2096).

References

- Bruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Friedrich, M., Gólvez-Ruiz, J. C., Klapötke, T. M., Mayer, P., Weber, R. & Weigand, J. J. (2005). Inorg. Chem. 44, 8044-8052.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m3017 [doi:10.1107/S1600536807057091]

Diaquabis $[5-(1H-tetrazol-5-ylamino-\kappa N^4)$ tetrazolato- κN^1 manganese (II) dihydrate

J.-M. Lin, Y.-F. Guan and W. Dong

Comment

The metal complexes of bistetrazolylimine, containing nine electron-donating nitrogen atoms, have not been aroused sufficient attention (Friedrich *et al.*, 2005). The bistetrazolylimine and its deprotonated anions can show a number of different coordinating or bridging modes. The title complex consists of a Mn^{II} atom lying on an inversion center, two bistetrazolylimine ligands, two coordinated water molecules and two free water molecules (Table 1; Fig. 1). The ligand acts as chelating bidentate and the Mn^{II} atom is coordinated by four N atoms from two ligands and two water molecules in an octahedral geometry with the axial O—Mn—O bond angle of 180.0 (1)°. A three-dimensional network is constructed through O—H…N, N—H…O and N—H…N hydrogen bonds between the water molecules and the ligands (Table 2; Fig. 2).

Experimental

A mixture of manganese chlorate tetrahydrate (0.02 g, 0.1 mmol), bistetrazolylimine (0.031 g, 0.2 mmol) and water (20 ml) was heated in a 25 ml Teflon-lined autoclave at 433 K for 3 d, followed by slowly cooling to room temperature. The resulting mixture was filtered and washed with 95% methanol, and colorless crystals were collected and dried in air. Analysis, calculated for $C_4H_{12}MnN_{18}O_4$: C 11.13, H 2.78, N 58.46%; found: C 10.96, H 2.93, N 58.21%.

Refinement

H atoms bound to the ligand were positioned geometrically and refined as riding, with N—H = 0.86Å and $U_{iso}(H) = 1.2U_{eq}(N)$. H atoms belonging to water molecules were located in a difference Fourier map. One H atom (H3) attached to the water molecule O1 was fixed with $U_{iso}(H) = 1.5U_{eq}(O)$ and the other H atoms were refined isotropically. The highest residual electron density was found 0.95 Å from O1 and the deepest hole 0.23Å from Mn1.

Figures

Fig. 2. The packing diagram of the title compound, showing a three-dimensional network connected by O—H…N, N—H…O and N—H…N hydrogen bonds (dashed lines).

Diaquabis[5-(1*H*-tetrazol-5-ylamino- κN^4)tetrazolato- κN^1]manganese(II) dihydrate

 $F_{000} = 876.0$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.7 - 27.5^{\circ}$

 $\mu = 0.92 \text{ mm}^{-1}$

T = 296 (2) K

Block, colorless

 $0.24 \times 0.19 \times 0.12 \text{ mm}$

 $D_{\rm x} = 1.858 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 2291 reflections

Crystal data

 $[Mn(C_2H_2N_9)_2(H_2O)_2] \cdot 2H_2O$ $M_r = 431.26$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 14.8048 (12) Å b = 6.8674 (6) Å c = 15.1623 (12) Å $V = 1541.6 (2) \text{ Å}^3$ Z = 4

Data collection

1764 independent reflections
1148 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.084$
$\theta_{\rm max} = 27.5^{\circ}$
$\theta_{\min} = 2.7^{\circ}$
$h = -19 \rightarrow 19$
$k = -8 \rightarrow 8$
$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.052$	$w = 1/[\sigma^2(F_o^2) + (0.0848P)^2 + 0.1407P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.145$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 1.54 \text{ e } \text{\AA}^{-3}$
1764 reflections	$\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$
138 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0043 (13)

Secondary atom site location: difference Fourier map

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.5000	0.0000	0.5000	0.0220 (3)
N9	0.77109 (17)	0.0326 (4)	0.62014 (18)	0.0267 (7)
H2	0.8085	0.0652	0.6610	0.032*
N1	0.48570 (17)	0.0800 (4)	0.63974 (17)	0.0242 (7)
N5	0.63655 (18)	0.1039 (5)	0.69756 (17)	0.0288 (7)
H1	0.6677	0.1492	0.7408	0.035*
N3	0.41468 (18)	0.1035 (5)	0.76371 (18)	0.0295 (7)
N4	0.50344 (17)	0.1154 (5)	0.78366 (17)	0.0272 (7)
N8	0.79321 (19)	-0.0362 (4)	0.53957 (19)	0.0294 (7)
N2	0.40356 (18)	0.0821 (5)	0.67952 (18)	0.0310 (7)
N7	0.71908 (19)	-0.0692 (5)	0.49821 (18)	0.0297 (7)
N6	0.64677 (19)	-0.0217 (4)	0.54967 (17)	0.0253 (7)
C1	0.5441 (2)	0.0999 (5)	0.7061 (2)	0.0221 (7)
C2	0.6814 (2)	0.0412 (5)	0.6255 (2)	0.0244 (8)
01	0.5313 (2)	0.2997 (4)	0.46099 (17)	0.0382 (7)
Н3	0.5228	0.3125	0.4079	0.057*
H4	0.567 (4)	0.369 (8)	0.483 (3)	0.08 (2)*
O2	0.7346 (2)	0.2913 (5)	0.8230 (2)	0.0491 (9)
Н6	0.769 (4)	0.248 (10)	0.864 (4)	0.11 (2)*
Н5	0.707 (3)	0.377 (8)	0.850(3)	0.070 (18)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0181 (4)	0.0321 (5)	0.0157 (4)	-0.0019 (3)	-0.0014 (3)	-0.0011 (3)
N9	0.0181 (15)	0.0419 (18)	0.0200 (13)	0.0020 (12)	-0.0032 (11)	-0.0026 (13)
N1	0.0159 (14)	0.0381 (17)	0.0186 (14)	-0.0006 (12)	0.0016 (10)	-0.0031 (13)
N5	0.0165 (14)	0.0505 (19)	0.0194 (13)	-0.0011 (13)	-0.0022 (11)	-0.0084 (14)
N3	0.0188 (15)	0.0464 (19)	0.0233 (14)	-0.0027 (14)	0.0026 (11)	-0.0016 (13)
N4	0.0191 (14)	0.043 (2)	0.0196 (13)	-0.0023 (12)	0.0009 (11)	-0.0036 (13)
N8	0.0221 (16)	0.043 (2)	0.0228 (15)	0.0016 (13)	0.0018 (12)	-0.0010 (13)
N2	0.0171 (15)	0.054 (2)	0.0224 (15)	-0.0028 (14)	0.0028 (11)	-0.0041 (14)
N7	0.0195 (15)	0.0431 (18)	0.0265 (15)	0.0040 (14)	-0.0003 (11)	-0.0043 (13)
N6	0.0193 (15)	0.0369 (18)	0.0197 (14)	0.0018 (12)	-0.0008 (11)	-0.0033 (12)
C1	0.0196 (17)	0.0283 (19)	0.0185 (16)	-0.0040 (14)	0.0013 (12)	0.0017 (14)
C2	0.0169 (16)	0.033 (2)	0.0230 (17)	0.0000 (14)	-0.0005 (13)	-0.0002 (14)
01	0.0504 (18)	0.0390 (17)	0.0252 (13)	-0.0111 (14)	-0.0087 (14)	0.0034 (12)
02	0.0460 (18)	0.056 (2)	0.0454 (18)	0.0218 (16)	-0.0190 (14)	-0.0193 (15)

Geometric parameters (Å, °)

Mn1—O1 ⁱ	2.191 (3)	N5—C1	1.376 (4)
Mn1—O1	2.191 (3)	N5—H1	0.8600
Mn1—N1	2.199 (3)	N3—N2	1.295 (4)

supplementary materials

Mn1—N1 ⁱ	2.199 (3)	N3—N4	1.351 (4)
Mn1—N6	2.304 (3)	N4—C1	1.325 (4)
Mn1—N6 ⁱ	2.304 (3)	N8—N7	1.284 (4)
N9—C2	1.332 (4)	N7—N6	1.364 (4)
N9—N8	1.350 (4)	N6—C2	1.330 (4)
N9—H2	0.8600	O1—H3	0.8200
N1—C1	1.334 (4)	O1—H4	0.79 (5)
N1—N2	1.357 (4)	O2—H6	0.85 (6)
N5—C2	1.349 (4)	O2—H5	0.82 (5)
Ol ⁱ —Mn1—Ol	180.00 (13)	C2—N5—C1	124.0 (3)
Ol ⁱ —Mn1—N1	87.37 (10)	C2—N5—H1	118.0
O1—Mn1—N1	92.63 (10)	C1—N5—H1	118.0
O1 ⁱ —Mn1—N1 ⁱ	92.63 (10)	N2—N3—N4	110.6 (3)
O1—Mn1—N1 ⁱ	87.37 (10)	C1—N4—N3	103.8 (3)
N1—Mn1—N1 ⁱ	180.0	N7—N8—N9	107.2 (3)
O1 ⁱ —Mn1—N6	92.90 (10)	N3—N2—N1	109.0 (2)
O1—Mn1—N6	87.10 (11)	N8—N7—N6	110.4 (3)
N1—Mn1—N6	78.00 (9)	C2—N6—N7	105.6 (3)
N1 ⁱ —Mn1—N6	102.00 (9)	C2—N6—Mn1	128.6 (2)
O1 ⁱ —Mn1—N6 ⁱ	87.10 (11)	N7—N6—Mn1	124.65 (19)
O1—Mn1—N6 ⁱ	92.90 (10)	N4—C1—N1	112.6 (3)
N1—Mn1—N6 ⁱ	102.00 (9)	N4—C1—N5	122.3 (3)
N1 ⁱ —Mn1—N6 ⁱ	78.00 (9)	N1—C1—N5	125.2 (3)
N6—Mn1—N6 ⁱ	180.0	N6—C2—N9	108.5 (3)
C2—N9—N8	108.2 (3)	N6—C2—N5	127.9 (3)
C2—N9—H2	125.9	N9—C2—N5	123.6 (3)
N8—N9—H2	125.9	Mn1—O1—H3	109.5
C1—N1—N2	104.1 (2)	Mn1—O1—H4	127 (4)
C1—N1—Mn1	133.7 (2)	H3—O1—H4	116.8
N2—N1—Mn1	121.14 (19)	Н6—О2—Н5	101 (5)

Symmetry codes: (i) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
N9—H2···N3 ⁱⁱ	0.86	1.96	2.803 (4)	166	
N5—H1…O2	0.86	1.87	2.716 (4)	169	
O1—H3···N4 ⁱⁱⁱ	0.82	1.97	2.782 (4)	172	
O1—H4…N8 ^{iv}	0.79 (5)	2.33 (6)	3.072 (4)	157 (6)	
O2—H5···N2 ^v	0.82 (5)	2.21 (5)	2.859 (5)	136 (4)	
O2—H5···N7 ^{vi}	0.82 (5)	2.62 (5)	3.280 (4)	139 (4)	
O2—H6…N7 ^{vii}	0.85 (6)	2.39 (7)	3.140 (4)	148 (5)	
O2—H6···N2 ⁱⁱ	0.85 (6)	2.39 (6)	2.885 (4)	118 (5)	
(1)	1/2 1/2 (.)	2/2 $+1/2$ ()	+1 +1/2 +2/2. ()	1/2 1/2	

Symmetry codes: (ii) x+1/2, y, -z+3/2; (iii) x, -y+1/2, z-1/2; (iv) -x+3/2, y+1/2, z; (v) -x+1, y+1/2, -z+3/2; (vi) x, -y+1/2, z+1/2; (vii) -x+3/2, -y, z+1/2.

